Approximation of function and its derivatives using radial basis function networks
نویسندگان
چکیده
منابع مشابه
Function Approximation Using Robust Radial Basis Function Networks
Resistant training in radial basis function (RBF) networks is the topic of this paper. In this paper, one modification of Gauss-Newton training algorithm based on the theory of robust regression for dealing with outliers in the framework of function approximation, system identification and control is proposed. This modification combines the numerical robustness of a particular class of non-quad...
متن کاملFunction Emulation Using Radial Basis Function Networks
While learning an unknown input-output task, humans rst strive to understand the qualitative structure of the function. Accuracy of performance is then improved with practice. In contrast, existing neural network function approximators do not have an explicit means for abstracting the qualitative structure of a target function. To ll this gap, we introduce the concept of function emulation, acc...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملGPS orbit approximation using radial basis function networks
We present solutions for GPS orbit computation from broadcast and precise ephemerides using a group of artificial neural networks (ANNs), i.e. radial basis function networks (RBFNs). The problem of broadcast orbit correction, resulting from precise ephemerides, has already been solved using traditional polynomial and trigonometric interpolation. As an alternative approach RBFN broadcast orbit c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2003
ISSN: 0307-904X
DOI: 10.1016/s0307-904x(02)00101-4